# Lesson 2 Scalability, Massively Parallel Processing (MPP), and Distributed **Computing Systems**

2019

#### **Big Data needs**

- Processing of large data volume
- Intensive computations
- Scalability enables increase or decrease in the capacity of data storage, processing and analytics, as per the complexity of computations and volume of data

#### **Vertical Scalability**

- Means scaling up the given system's resources and increasing the system's analytics, reporting and visualization capabilities
- Solve problems of greater complexities by scaling up
- Architecture-aware algorithm design

#### **Vertical Scalability (Scaling up)**

- Means designing the algorithm according to the architecture that uses resources efficiently
- For example, *x* TB of data take time *t* for processing, code size with increasing complexity increase by factor *n*, then scaling up means that processing takes equal, less or much less than  $(n \times t)$  for *x* TB.

#### **Horizontal Scalability**

- Horizontal scalability means increasing the number of systems working in coherence and scaling out the workload
- Processing different datasets of a large dataset by increasing number of systems running in parallel.

### **Horizontal Scalability (Scaling Out)**

- Scaling out means using more resources and distributing the processing and storage tasks in parallel
- If *r* resources in a system process *x* TB of data in time *t*, then the (*p* × *x*) TB on *p* parallel distributed nodes such that the time taken up remains *t* or is slightly more than *t*

### **High Performance Capabilities**

- Simple execution model— scalable, distributed, and parallel computing)
- Deploy 'Massively Parallel Processing' Platforms (MPPs), cloud, grid, clusters, and distributed computing software

#### **Parallelization of tasks**

#### At several levels:

(i) distributing separate tasks onto separate threads on the same CPU,
(ii) distributing separate tasks onto separate CPUs on the same computer and

(iii) distributing separate tasks onto separate computers

2019

#### MPP

- The computational problem broken into discrete pieces of sub-tasks
- Processed simultaneously
- The system executes multiple program instructions or sub-tasks at any moment in time
- Total time taken will be much less than with a single compute resource

# Big Data Distributed Computing Paradigm

- Big Data > 10 MB
- Distributed, parallel, scalable,
- Shared nothing (No in-between data sharing and inter-processor communication)
- No shared in-between between the distributed nodes/clusters

### **Cloud Computing**

(i) on-demand service (ii) resource pooling, (iii) scalability, (iv) accountability, and (v) broad network access.

Cloud services can be accessed from anywhere and at any time through the Internet.

### **Cloud Computing**

- A local private cloud can also be set up on a local cluster of computers
- DaaS, IaaS, SaaS, PaaS Service models

### **Grid Computing**

• Refers to distributed computing, in which a group of computers from several locations are connected with each other to achieve a common task. The computer resources are heterogeneously and geographically disperse for an Application

#### **Cluster Computing**

- Cluster of tightly coupled homogenous systems cooperating w
- Cluster functions together to accomplish the same task
- Clusters are used mainly for load balancing, shift processes between nodes to keep an even load on the group of connected computers



#### We learnt :

- Scaling up the system (architecture aware design)
- Scaling out to distributed parallel processing nodes
- Cloud, grid and cluster processing

## End of Lesson 2 on Scalability, Massively Parallel Processing (MPP), and Distributed Computing Systems